Math 241, Practice Exam 1 Instructor: Christian Rosendal

1. Exercise

(a) Compute an equation for the unique plane containing the three points

$$
P_{1}=(2,3,4), \quad P_{2}=(3,3,5), \quad P_{3}=(0,1,-1) .
$$

(b) Find the symmetric equations for the line perpendicular to the plane

$$
3 x-7 y+z=5
$$

and passing through the origin.
(c) Find $\cos \theta$, where θ is the angle between $\mathbf{a}=(\sqrt{2},-\sqrt{3}, 2)$ and $\mathbf{b}=(\sqrt{2}, \sqrt{3}, 5)$.
(d) Find the distance from the point $P=(1,1,1)$ to the plane with equation

$$
2 x-y+3 z=1
$$

(e) Write the formula for $(a, b, c) \times(x, y, z)$.

2. Exercise

Consider a horizontal lever 10 feet in length attached at one end to an axle. Suppose a force \mathbf{F} of magnitude 20 pounds is applied to the other end of the lever and that \mathbf{F} makes an angle 45° with the horizontal.
-Find the magnitude of the moment around the axle.

3. Exercise

(a) Compute the integral $\int_{1}^{2} \mathbf{F}(t) d t$ where

$$
\mathbf{F}(t)=\ln t \mathbf{i}+t^{2} \mathbf{j}+\cos (\pi t) \mathbf{k}
$$

(b) Find the length of the curve C parametrised by the smooth function

$$
\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t^{3 / 2} \mathbf{k}, \quad 0 \leqslant t \leqslant \frac{20}{3}
$$

4. Exercise

Consider a particle with position

$$
\mathbf{r}(t)=\frac{t^{3}}{3} \mathbf{i}+\frac{\sqrt{3}}{\sqrt{2}} t^{2} \mathbf{j}+3 t \mathbf{k}
$$

at time t
(a) Compute $\left(3+t^{2}\right)^{2}$.
(b) Compute the velocity $\mathbf{v}(t)$.
(c) Compute the acceleration $\mathbf{a}(t)$.
(d) Compute the speed $\|\mathbf{v}(t)\|$.
(e) Find the tangent \mathbf{T}.
(f) Find the tangential component a_{T} of acceleration.
(g) Find the normal component a_{N} of acceleration.

